
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-Performance Embedded Programming Fall 2024

 1 Instructor: Daniel Llamocca

Laboratory 4
(Due date: Oct. 15th)

OBJECTIVES
▪ Compile and execute C++ code using the TBB library in Ubuntu 12.04.4 using the Terasic DE2i-150 Development Kit.
▪ Perform gamma correction on a grasycale image read as a binary file.

▪ Execute parallel applications using TBB: parallel_for

TERASIC DE2I-150 DEVELOPMENT KIT

* You can alternatively complete these activities using a Linux laptop.

DOCUMENTATION

▪ Refer to the board website or the Tutorial: Embedded Intel for User Manuals and Guides.

TUTORIALS

▪ Refer to the Tutorial: High-Performance Embedded Programming with the Intel® AtomTM platform → Tutorial 5 for associated

examples.

ACTIVITIES

FIRST ACTIVITY: GAMMA CORRECTION APPLIED TO A GRAYSCALE IMAGE (100/100)
▪ Single pixel (or pixel-to-pixel) operations is a natural candidate for parallel programming as the operations are independent

of each other. Among the most common operations, we can mention gamma correction, contrast enhancement, thresholding.
▪ In this activity, you are asked to perform gamma correction with 𝛾 = 0.6 on a grayscale image.

GAMMA CORRECTION
▪ Gamma correction is defined by 𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛

𝛾, where 𝑉𝑜𝑢𝑡, 𝑉𝑖𝑛 ∈ [0,1]. To deal with pixel values between 0 and 255, the

equation needs to be re-written.

▪ For an 8-bit grayscale pixel IM, the resulting pixel OM is given by:

𝑂𝑀 = 𝑟𝑜𝑢𝑛𝑑 ((
𝐼𝑀

256
)
𝛾

× 256)

where IM, OM  [0,255].

▪ Fig. 1 depicts the input grayscale image and the resulting output image (with 𝛾 = 0.6).

▪ Since the operations applied to every pixel are independent, this application is suitable for TBB parallel_for.

▪ To display the images, you can use the lab4.m script that runs in MATLAB® or GNU Octave (open-source version of

MATLAB®). You can also use the script to generate input binary files from any picture you want to apply these type of pixel-
to-pixel operations.

 Figure 1. (a) Input grayscale image. (b) Processed image with gamma correction 𝛾 = 0.6.

(a) (b)

https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=11&No=529
http://www.secs.oakland.edu/~llamocca/emb_intel.html
http://www.secs.oakland.edu/~llamocca/emb_intel.html

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-Performance Embedded Programming Fall 2024

 2 Instructor: Daniel Llamocca

INSTRUCTIONS
▪ Write a.cpp program that reads a binary input file (.bif), computes the pixel-to-pixel operation (gamma correction with

𝛾 = 0.6), and stores the result in a binary output file (.bof).

✓ Your code should be parallelized via TBB parallel_for.

✓ Include a standard sequential implementation in order to compare processing times.

▪ Considerations:

✓ Input matrix: Read from an input binary file (.bif). You can use the provided uchip.bif file that represents the 940x602

input image in Fig. 1(a). Each element is an unsigned 8-bit number (or uint8).

 You can use the function read_binfile from Laboratory 3 to read data the image data (stored as a 1D array in a

raster-scan fashion) (use typ=0 since each element is of type uint8).

 You can also use the read image function available in Tutorial #2 (for image convolution).

✓ Output matrix: Elements are of type int (32-bit signed integer), also referred as int32.

 To perform the (
𝐼𝑀

256
)
𝛾
× 256 operation, you need to transform the input pixel values (uint8) into double first.

 In MATLAB®, this would be: R = ((double(IM)/256).^0.6)*256;

 The 𝑟𝑜𝑢𝑛𝑑 operation in the equation can be achieved via rounding and saturation in C++ (this transforms a double

type into an integer). The integer will be an int32 type. * We could have used uint8, but we keep it at int32 for

simplicity’s sake.
 Rounding: For each element x, you can use: if (x >= 0) xr = x + 0.5; else xr = x-0.5;

 Saturation: You can use typecasting: xi = (int) xr;

 To store the int32 output matrix in a .bof file, you can use write image code available in Tutorial #2.

✓ TBB - parallel_for: Be careful to avoid race conditions inside the body of the parallel_for loop (see Lecture Notes – Unit 4).

It is recommended to use a function to encapsulate the entire operation applied to each pixel.

✓ You can use one parallel_for loop (after all, the input matrix is represented as a 1D array), or nested parallel_for loops.

▪ Output matrix verification: You need to verify the generated .bof file. You can do this via the lab4.m script. Note that

when displaying, we usually saturate the matrix to [0 255]. This is performed by the script.
✓ Once you place the .bof file in the same folder as the script, run the script. The script will display the output image

generated by MATLAB as well as the output image generated by your .cpp code. They should match (a difference image

is also displayed).

▪ Compile and execute the application on the DE2i-150 Board. Complete Table I (take an average over ~10 executions).

▪ Take a screenshot of the software running in the Terminal. It should show the computation time for both the sequential and

TBB implementations
✓ Your code should measure the computation time (only the actual computation portion) in us.

▪ Provided files: lab4.m, uchip.jpg, uchip.bif.

TABLE I. COMPUTATION TIME (US) OF THE GAMMA CORRECTION APPLICATION

 Computation Time (us)

Sequential

TBB

SUBMISSION
▪ Demonstration: In this Lab 4, the requested screenshot of the software routine running in the Terminal suffices.

✓ If you prefer, you can request a virtual session (Webex) with the instructor and demo it (using a camera).

▪ Submit to Moodle (an assignment will be created):

✓ One .zip file
 1st Activity: The .zip file must contain the source files (.c, .h, Makefile), the output binary file (.bof) and the

requested screenshot.
✓ The lab sheet (a PDF file) with the completed Table I.

TA signature: __________________________________ Date: ______________________________

	Objectives
	Terasic DE2i-150 Development Kit
	Documentation
	Tutorials

	Activities
	First Activity: Gamma Correction applied to a Grayscale Image (100/100)

	Submission

